Lecture for Wednesday

Dr. Prince BIOL 1408

THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN

Genes are expressed as proteins

- A gene is a segment of DNA that contains the instructions for the synthesis of a specific protein
 - It is these proteins that ultimately determine the phenotype of an organism
 - The one gene-one enzyme hypothesis was based on studies of inherited metabolic diseases
 - The one gene-one protein hypothesis expands the relationship to proteins other than enzymes
 - The one gene-one polypeptide hypothesis recognizes that some proteins are composed of multiple polypeptides

DNA

Nucleus

Cytoplasm

– DNA is transcribed into RNA – RNA is translated into protein

10.8 The genetic code is the Rosetta stone of life

Characteristics of the genetic code

- Triplet: Three nucleotides specify one amino acid
 - 61 codons correspond to amino acids
 - AUG codes for methionine and signals the start of transcription
 - 3 "stop" codons signal the end of translation
- Redundant: More than one codon for some amino acids
- Unambiguous: Any codon for one amino acid does not code for any other amino acid
- Does not contain spacers or punctuation: Codons are adjacent to each other with no gaps in between
- Nearly universal

Sec			Second	ond base		
-		U	С	Α	G	
First base	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA GIn	CGU CGC CGA CGG	D C C Sase
	A	AUU AUC AUA AUA AUG Met or start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	C C A C Third I
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG	U C A G

10.9 Transcription produces genetic messages in the form of RNA

- Overview of transcription
 - The two DNA strands separate
 - One strand is used as a pattern to produce an RNA chain, using specific base pairing
 - For A in DNA, U is placed in RNA
 - RNA polymerase catalyzes the reaction

10.9 Transcription produces genetic messages in the form of RNA

- Stages of transcription
 - Initiation: RNA polymerase binds to a promoter, where the helix unwinds and transcription starts
 - Elongation: RNA nucleotides are added to the chain
 - Termination: RNA polymerase reaches a terminator sequence and detaches from the template

Copyright © 2009 Pearson Education, Inc.

10.10 Eukaryotic RNA is processed before leaving the nucleus

- Messenger RNA (mRNA) contains codons for protein sequences
- Eukaryotic mRNA has interrupting sequences called introns, separating the coding regions called exons
- Eukaryotic mRNA undergoes processing before leaving the nucleus
 - Cap added to 5' end: single guanine nucleotide
 - Tail added to 3' end: Poly-A tail of 50–250 adenines
 - RNA splicing: removal of introns and joining of exons to produce a continuous coding sequence

Copyright © 2009 Pearson Education, Inc.

10.11 Transfer RNA molecules serve as interpreters during translation

- Transfer RNA (tRNA) molecules match an amino acid to its corresponding mRNA codon
 - tRNA structure allows it to convert one language to the other
 - An amino acid attachment site allows each tRNA to carry a specific amino acid
 - An anticodon allows the tRNA to bind to a specific mRNA codon, complementary in sequence
 - A pairs with U, G pairs with C

10.12 Ribosomes build polypeptides

- Translation occurs on the surface of the ribosome
 - Ribosomes have two subunits: small and large
 - Each subunit is composed of ribosomal RNAs and proteins
 - Ribosomal subunits come together during translation
 - Ribosomes have binding sites for mRNA and tRNAs

10.13 An initiation codon marks the start of an mRNA message

- Initiation brings together the components needed to begin RNA synthesis
- Initiation occurs in two steps
 - 1. mRNA binds to a small ribosomal subunit, and the first tRNA binds to mRNA at the start codon
 - The start codon reads AUG and codes for methionine
 - The first tRNA has the anticodon UAC
 - 2. A large ribosomal subunit joins the small subunit, allowing the ribosome to function
 - The first tRNA occupies the P site, which will hold the growing peptide chain
 - The A site is available to receive the next tRNA

10.14 Elongation adds amino acids to the polypeptide chain until a stop codon terminates translation

- Elongation is the addition of amino acids to the polypeptide chain
- Each cycle of elongation has three steps
 - 1. Codon recognition: next tRNA binds to the mRNA at the A site
 - 2. Peptide bond formation: joining of the new amino acid to the chain
 - Amino acids on the tRNA at the P site are attached by a covalent bond to the amino acid on the tRNA at the A site

10.14 Elongation adds amino acids to the polypeptide chain until a stop codon terminates translation

3. Translocation: tRNA is released from the P site and the ribosome moves tRNA from the A site into the P site

10.14 Elongation adds amino acids to the polypeptide chain until the stop codon

- Elongation continues until the ribosome reaches a stop codon
- Applying Your Knowledge
 How many cycles of elongation are required to produce a protein with 100 amino acids?
- Termination
 - The completed polypeptide is released
 - The ribosomal subunits separate
 - mRNA is released and can be translated again

Copyright © 2009 Pearson Education, Inc.

Copyright © 2009 Pearson Education, Inc.

10.15 Review: The flow of genetic information in the cell is DNA \rightarrow RNA \rightarrow protein

- Does translation represent:
 - DNA \rightarrow RNA or RNA \rightarrow protein?
- Where does the information for producing a protein originate:
 - DNA or RNA?
- Which one has a linear sequence of codons:
 - rRNA, mRNA, or tRNA?
- Which one directly influences the phenotype:
 - DNA, RNA, or protein?

Copyright @ 2009 Pearson Education, Inc.

Copyright © 2009 Pearson Education, Inc.

10.16 Mutations can change the meaning of genes

- A mutation is a change in the nucleotide sequence of DNA
 - Base substitutions: replacement of one nucleotide with another
 - Effect depends on whether there is an amino acid change that alters the function of the protein
 - Deletions or insertions
 - Alter the reading frame of the mRNA, so that nucleotides are grouped into different codons
 - Lead to significant changes in amino acid sequence downstream of mutation
 - Cause a nonfunctional polypeptide to be produced

10.16 Mutations can change the meaning of genes

Mutations can be

- Spontaneous: due to errors in DNA replication or recombination
- Induced by mutagens
 - High-energy radiation
 - Chemicals

A Mutant hemoglobin DNA

Sickle-cell hemoglobin

Val

Normal gene

Base substitution

