### Chapter 3 Part 2

#### **The Molecules of Cells**

## PROTEINS & & NUCLEIC ACIDS

Lecture by Dr. Fernando Prince

3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life

- We have already learned that the most abundant substance in the body is water.
- Today we learn that the second most abundant substance in the body is protein.
- Proteins have both structural and physiological functions and are amongst the most varied substances in the body.

#### Protein

 Proteins are macromolecules composed of combinations of 20 different types of amino acids bound together by peptide bonds in the order dictated by the genetic code.



### Enzymes are the biological machines that carry out the life's functions

- Most enzymes are globular proteins that act as biological catalysts that is, they speed up reactions by lowering their activation energy.
- Enzymes are chemically specific and are named for the reaction they catalyze and characteristically end in -ase.



#### Mechanism of Enzyme Action Active site Amino acids + 1 Enzyme (E) Substrates (s) Enzymesubstrate complex (E–S) $H_20$ 2 Free enzyme (E) 3 Peptide bond Internal rearrangements leading to catalysis

Dipeptide product (P)

## 3.11 Proteins are essential to the structures and functions of life

- **Structural** proteins provide associations between body parts (Fibrous)
- **contractile** proteins are found within muscle (Fibrous)
- Defensive proteins include antibodies of the immune system (Globular)
- **signal** proteins are best exemplified by the hormones (Globular)
- **Receptor** proteins serve as antenna for outside signals (Globular)
- **transport** proteins carry oxygen (Globular)
- **Enzymes** speed up reactions (Globular)

### 3.12 The building blocks of proteins

- Amino acids are the building blocks of proteins.
- Amino acids have an amino group and a carboxyl group thus the name, amino acid!



## Amino acids are classified as hydrophobic or hydrophilic



Copyright @ 2009 Pearson Education, Inc.

### 3.12 The building blocks of proteins

- Amino acids are the monomer building blocks that make proteins (polymers).
- The covalent bond resulting from dehydration synthesis between the carboxyl group of one amino acid and the amino group of a second amino acid is called a peptide bond.



### Structural Levels of Proteins

- DNA the dictator!
- The sequence of the amino acids is the primary structure of a protein and is dictated by the genetic code found in DNA.



### 3.14 Hydrogen bonds bend the chain

- As the chain bends and folds due to atraction from the amino acid side chains the secondary structure becomes evident.
- There are alpha helixes and beta pleates.



#### 3.14 The 3D structure of the chain from start to finish

• The overall three-dimensional shape of a protein is its **tertiary structure** 



# 3.14 Some functional proteins need more than one chain

- When the functional protein must have more than one polypeptide chain that protein has a quaternary structure
  - Hemoglobin is an example of a protein with quaternary structure



Four Levels of Protein Structure



### 3.13 Function follows form!

The shape of a protein determines its specific function



#### 3.13 For a protein staying in shape means everything

– When the shape of a protein is changed permanently it loses its nature, it is Denatured!



3.15 TALKING ABOUT SCIENCE: Linus Pauling contributed to our understanding of the chemistry of life

- After winning a Nobel Prize in Chemistry, Pauling spent considerable time studying biological molecules
  - He discovered an oxygen attachment to hemoglobin as well as the cause of sickle-cell disease
  - Pauling also discovered the alpha helix and pleated sheet of proteins

### Nucleic Acids

- Composed of C, O, H, N, and P
- Five nitrogen bases contribute to nucleotide structure – adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U)
- DNA contains thymine (T) but no uracil (U)
- RNA contains uracil (U) but no thymine (T)

#### 3.16 The building blocks of nucleic acids are nucleotides

- **DNA** (deoxyribonucleic acid)
- RNA (ribonucleic acid)

The Structure of a **Nucleotide** 



Nitrogenous base

The sugar is a ribose or deoxyribose

# 3.16 Nucleic acids are information-rich polymers of nucleotides

- A nucleic acid polymer, a polynucleotide, forms from the nucleotide monomers when the phosphate of one nucleotide bonds to the sugar of the next nucleotide
  - The result is a repeating sugar-phosphate backbone with protruding nitrogenous bases

# 3.16 Nucleic acids are information-rich polymers of nucleotides

- Two polynucleotide strands wrap around each other to form a DNA double helix
  - The two strands are associated because particular bases always hydrogen bond to one another
  - A pairs with T, and C pairs with G, producing base pairs
- RNA is usually a single polynucleotide strand



#### Structure of DNA

Doublestranded helical molecule found in the nucleus of the cell and some other organelles





(a)

# 3.16 Nucleic acids are information-rich polymers of nucleotides

- A particular nucleotide sequence that can instruct the formation of a polypeptide is called a **gene** 
  - Most DNA molecules consist of millions of base pairs and, consequently, many genes
  - These genes, many of which are unique to the species, determine the structure of proteins and, thus, life's structures and functions

# 3.17 EVOLUTION CONNECTION: Lactose tolerance is a recent event in human evolution

- Mutations are alterations in bases or the sequence of bases in DNA
  - Lactose tolerance is the result of mutations
  - In many people, the gene that dictates lactose utilization is turned off in adulthood
  - Apparently, mutations occurred over time that prevented the gene from turning off
  - This is an excellent example of human evolution

## Deoxyribonucleic Acid (DNA)

- Replicates itself before the cell divides, ensuring genetic continuity (during the S phase of the cell cycle)
- Provides all the instructions for protein synthesis

## Ribonucleic Acid (RNA)

- Single-stranded molecule found in both the nucleus and the cytoplasm of a cell (smaller than DNA, much smaller)
- Uses the nitrogenous base uracil instead of thymine
- Three types of RNA: messenger RNA, transfer RNA, and ribosomal RNA

#### Adenosine Triphosphate (ATP)

 Molecule used for energy transport, not used for energy storage! •Adeninecontaining RNA nucleotide with three phosphate groups



| Classes of macromolecules<br>and their components                                                                                      | Functions                                                                    | Examples                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Carbohydrates                                                                                                                          | Energy for cell,<br>raw material                                             | a                                                                                                            |
| н н н он                                                                                                                               | b                                                                            | Starch, glycogen                                                                                             |
| H OH<br>Monosaccharides                                                                                                                | Plant cell support                                                           | C                                                                                                            |
| Lipids<br>(don't form polymers)                                                                                                        | Energy storage                                                               | d                                                                                                            |
| Н Н Н С<br>I I I I<br>H – C – – – Н С<br>OH OH OH CH2<br>Glycerol Fatty acid СH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>C | e                                                                            | Phospholipids                                                                                                |
| Components of CH <sub>2</sub><br>a fat molecule                                                                                        | Hormones                                                                     | f                                                                                                            |
| Proteins<br>gh<br>HH<br>i<br>Amino acid                                                                                                | j<br>k<br>I<br>Transport<br>Communication<br>n<br>Storage<br>Receive signals | Lactase<br>Hair, tendons<br>Muscles<br>m<br>Signal proteins<br>Antibodies<br>Egg albumin<br>Receptor protein |
| Nucleic Acids                                                                                                                          | Heredity                                                                     | r                                                                                                            |
|                                                                                                                                        | S                                                                            | DNA and RNA                                                                                                  |
| Nucleotide                                                                                                                             |                                                                              |                                                                                                              |

Copyright © 2009 Pearson Education, Inc.

#### You should now be able to

- 1. Discuss the importance of carbon to life's molecular diversity
- 2. Describe the chemical groups that are important to life
- 3. Explain how a cell can make a variety of large molecules from a small set of molecules
- 4. Define monosaccharides, disaccharides, and polysaccharides and explain their functions
- 5. Define lipids, phospholipids, and steroids and explain their functions

#### You should now be able to

- 6. Describe the chemical structure of proteins and their importance to cells
- 7. Describe the chemical structure of nucleic acids and how they relate to inheritance